
Paweł Rajba
pawel@cs.uni.wroc.pl
http://itcourses.eu/

mailto:pawel.rajba@gmail.com
http://kursy24.eu/

 Introduction
 OpenID Connect
 SAML2
 WS-Trust
 WS-Federation

 Federation example:

 Agreement between countries

▪ So one can visit another country

▪ Level of trust defines the rules
▪ Schengen Area vs. North Korea

 Federated Identity: passport

 A federated identity in information
technology is the means of linking a person's
electronic identity and attributes, stored
across multiple distinct identity management
systems.

 Federation
 provides a mechanism where one identity is shared in different

applications/companies
 Is based on trust
 Usually executed by a token-based system

▪ E.g. SAML2, Open ID Connect, WS-Trust, WS-Federation
 Federation vs. SSO

 Federation allows SSO without storing password
▪ Otherwise, client needs to authenticate in every app

 SSO is a subset of Federation
 Central Authentication Service (CAS)

 Protocol for central authN for web applications
 Not the same as SSO

▪ One can log into APP1 and need to log again into APP2 (but centrally)

 No federation is possible

 In other words:

 Federation: identity shared between realms

▪ For instance: using a username in both companies, the
same person is identified (first name, last name, e-mail,
birth date, etc.)

 SSO: user authenticates once for a set of
applications

▪ Can be implemented in different ways, e.g. based on
session ID, token, storing the password, etc.

 A scenario
 1 user (U) with a browser (B)
 2 applications (APP1 and APP2) in different realms

 Federation without SSO:
 U visits APP1 by the B and make an authN
 A session is established between B and APP1
 U visits APP2 by the B and make an authN again

▪ Maybe with different password

 A session is established between B and APP2
 Where is the additional value?

▪ Even if the authN is required twice, the account is available in APP1/2
 Federation with SSO

 The same, but in step 3 authN is not required again
 What about SSO without Federation?

 Credentials stored on the client
 The same usernames are used in APP1 and APP2, but they are not federated

 Basic terminology

 IdP: Identity Provider

▪ Authorization Server in Auth2

 RP: Relying Party

▪ Client in Auth2

 STS: Security Token Service

▪ Authorization Server in Auth2

 Typical use-cases or challenges

 Cross-domain

 Web-based single sign-on

 Cross-domain user account provisioning

 Cross-domain entitlement management

 Cross-domain user attribute exchange.

 Some products supporting federation
 Oracle Identity Federation

 PingFederate Federation Server

 Tivoli Federated Identity Manager (IBM)

 AWS Identity and Access Management (IAM)

 Identity Federation and Remote Access (F5)

 CA Single Sign-On

 Microsoft Azure Access Control Service

 NetIQ Access Manager

 Let’s take a closer look on

 Open ID Connect

 SAML 2.0

 … and a quick look on

 WS-Trust

 WS-Federation

OpenID Connect

 It is quite popular that OAuth2 is abused for
authentication

 The most common scenario is as follows:

 User authenticates on AS

 Afterwards an application exchange code for
access token

 The assumption is that if the application is able to
get data using access token, then it means that
user properly authenticated on AS

 Main problems

 OAuth2 is an authorization framework, there is no
flow related to authentication

▪ Although authentication is a part of the OAuth2 flow

 The focus is on the client application, not on a user

▪ In other words, authorization is for the client application,
not for the user

▪ After getting an access token, user is no more involved

 Main issue with applying OAuth2 for authN

 The goal is to provide a token which allows to get
specific information

▪ As a result there is only an access_token

▪ There is no information about the user

 If another app gets the token, only can obtain the
same data

▪ If used for authentication, app can impersonate the user

▪ There is no additional verification who is the proper
receiver of the token

 An example where OAuth2 is not enough

 Application get e-mails

▪ … but wants to not only show
them, but also .e.g translate
and store in the application

 In this scenario we need
identity, not only accesses

 ID is never sent outside the application

 And we don’t built any auth services locally

https://www.youtube.com/watch?v=BdKmZ7mPNns

https://www.youtube.com/watch?v=BdKmZ7mPNns

 Very good considerations

 OAuth 2.0 and Sign-In
by Vittorio Bertocci

▪ http://www.cloudidentity.com/blog/2013/01/02/oauth-2-
0-and-sign-in-4/

 The problem with OAuth for Authentication
by John Bradley

▪ http://www.thread-safe.com/2012/01/problem-with-
oauth-for-authentication.html

Source: http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/
http://www.thread-safe.com/2012/01/problem-with-oauth-for-authentication.html
http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

 The solution is the OpenID Connect
 An authentication protocol built on top of OAuth2

▪ We can consider OpenID Connect as a OAuth2 profile which defines
a flow for authentication

 Allows to get the information about the user
▪ Adds ID Token where this information is stored

 Emerging protocol, but has many implementations
▪ Google is probably the best one

 The main website:
http://openid.net/connect/

 A very good introduction
▪ http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/

 Let’s see the presentation video
 https://www.youtube.com/watch?v=Kb56GzQ2pSk

▪ We will use the offline mode

http://openid.net/connect/
http://nat.sakimura.org/2012/01/20/openid-connect-nutshell/
https://www.youtube.com/watch?v=Kb56GzQ2pSk

 To make a request the following information is
required
 Client ID

 Client Secret

 End-user authorization endpoint

 Token endpoint

 User info endpoint
 Additionally:
 grant_type = token id_token

 scope = openid profile email …

 GET

 /authorize?grant_type=token%20id_token&
scope=openid%20proflie&
redirect_uri=https%3A%2F%2Fclient%2Eexample
%2Ecom%2Fcb
HTTP/1.1

 Host: server.example.com

 Beside access_token included in OAuth2 response, one
gets id_token with the following information
 aud (audience)

▪ The client_id that this id_token is intended for.

 exp (expiration)
▪ The time after which this token must not be accepted

 sub (subject)
▪ A locally unique and never reassigned identifier for the user (subject)
▪ E.g. “24400320″ or “AItOawmwtWwcT0k51BayewNvutrJUqsvl6qs7A4″.

 iss (issuer)
▪ A https: URI specifying the fully qualified host name of the issuer, which

when paired with the user_id, creates a globally unique and never
reassigned identifier.

▪ E.g. “https://aol.com”, “https://google.com”, or “https://sakimura.org”.

 nonce - nonce value sent in the request.
 All these parameters are required

 The following rules should be applied
 An authorization server must only issue assertions

about user identifiers within its domain
 The client MUST verify that the aud matches

its client_id and iss matches the domain (including
sub-domain) of the issuer of the client_id

 The authorization server is responsible for managing
its own local namespace and enforcing that
each user_id is locally unique and never reassigned

 When the client stores the user identifier, it MUST
store the tuple of the user_id and iss.
The user_id MUST NOT be over 255 ASCII characters
in length

 Basic Client Profile
 Based on OAuth2 code flow
 Designed for a web-based relying parties
 Subset of OpenId Connect Core specification
 More: http://openid.net/specs/openid-connect-basic-1_0.html

Source: http://www.slideshare.net/metadaddy/openid-connect-an-overview

http://openid.net/specs/openid-connect-basic-1_0.html
http://www.slideshare.net/metadaddy/openid-connect-an-overview

 Implicit Client Profile
 Based on OAuth2 implicit flow
 Designed for a web-based relying parties
 Subset of OpenId Connect Core specification
 More: http://openid.net/specs/openid-connect-implicit-1_0.html

Source: http://www.slideshare.net/metadaddy/openid-connect-an-overview

http://openid.net/specs/openid-connect-implicit-1_0.html
http://www.slideshare.net/metadaddy/openid-connect-an-overview

 Discovery
 Allows client app to

▪ determine the identity of the End-User
▪ Based on authentication performed in Authorization Server

▪ obtain a basic profile a of End-User

 Uses WebFinger (RFC7033)
 More: https://openid.net/specs/openid-connect-

discovery-1_0.html
 Registration
 Allows client app to register on the server
 More: http://openid.net/specs/openid-connect-

registration-1_0.html

https://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html

 A very good open source provider and a set of
samples
 https://identityserver.github.io/Documentation/

 Getting started videos
 Introduction into the topic

▪ https://vimeo.com/113604459

 Provider introduction
▪ http://vimeo.com/91397084

 Walkthrough samples
▪ http://vimeo.com/91405115

https://identityserver.github.io/Documentation/
https://vimeo.com/113604459
http://vimeo.com/91397084
http://vimeo.com/91405115

SAML2

 Security Assertion Markup Language
 XML based protocol
 OASIS standard

 SAML 1.0: 2002

 SAML 1.1: 2003

 SAML 2.0: 2005

 Flexible and extensible protocol

 Entity (or system entity): An active element
of a computer/network system

 Principal: An entity whose identity can be
authenticated

 Subject: A principal in the context of a
security domain

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Identity: The essence of an entity, often described by
one's characteristics, traits, and preferences
 Anonymity: Having an identity that is unknown or

concealed
 Identifier: A data object that uniquely refers to a

particular entity
 Pseudonym: A privacy-preserving identifier

 Federated identity: Existence of an agreement
between providers on a set of identifiers and/or
attributes to use to refer to a principal
 Account linkage: Relating a principal's accounts at two

different providers so that they can communicate about
the principal

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Asserting party (SAML authority): An entity
that produces SAML assertions
 Identity provider: An entity that creates, maintains,

and manages identity information for principals and
provides principal authentication to other service
providers

 Relying party: An entity that decides to take an
action based on information from another
system entity
 Service provider: An entity that provides services to

principals or other entities

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 User

 Subject, principal

 Identity Provider

 Asserting party

 Service Provider

 Relying party

 Identity Federation
 SSO / Single Sign-Out
 Securing Web Services
 Attribute Services

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 An assertion is a declaration of fact,
according to someone

 SAML assertions contain one or more
statements about a subject:

 Authentication statement

▪ Joe authenticated with a password at 9:00am

 Attribute statement (which itself can contain
multiple attributes):

▪ Joe is a manager with a $500 spending limit

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Structure

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Example

https://en.wikipedia.org/wiki/SAML_2.0

https://en.wikipedia.org/wiki/SAML_2.0

 Example explained
 In words, the assertion encodes the following information:

▪ The assertion "b07b804c-7c29-ea16-7300-4f3d6f7928ac"
was issued at time "2004-12-05T09:22:05Z"
by identity provider (https://idp.example.org/SAML2)
regarding subject (3f7b3dcf-1674-4ecd-92c8-1544f346baf8)
exclusively for service provider (https://sp.example.com/SAML2).

 The authentication statement, in particular, asserts the
following:
▪ The principal identified in the <saml:Subject> element

was authenticated at time "2004-12-05T09:22:00"
by means of a password sent over a protected channel.

 Likewise the attribute statement asserts that:
▪ The principal identified in the <saml:Subject> element

is a staff member at this institution.

https://en.wikipedia.org/wiki/SAML_2.0

https://en.wikipedia.org/wiki/SAML_2.0

 A SAML message is transmitted from one entity
to another either by value or by reference.
 A reference to a SAML message is called an artifact.

 The receiver of an artifact resolves the reference
by sending a request directly to the issuer of the
artifact

 Sending references may have sources in:
 Technical constraints, e.g. limited length of URL

 Security reasons, e.g. to not expose secret data to a
browser

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 So, artifacts are a small, fixed-size, structured
data object pointing to a typically larger,
variably sized SAML protocol message

 Designed to be embedded in URLs and
conveyed in HTTP messages

 Allows for “pulling” SAML messages rather
than having to push them

 SAML defines one artifact format but you can
roll your own

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Assertion query and request
 Query for existing assertion based on simple reference, subject-

matching, or statement type, e.g. by <AssertionIDRequest>
 Authentication request (the most important one)

 SP requests a fresh authn assertion that adheres to various
requirements (specified by means of Authentication Context)

 Artifact resolution (“meta-protocol”)
 Dereferences an artifact to get a protocol message

 Name identifier management
 IdPs and SPs inform each other of changes to their mutual

understanding of what a principal's name is
 Name identifier mapping

 Privacy-preserving way for two SPs to refer to the same principal,
e.g. by obtaining encrypted ID <saml:EncryptedID>

 Single logout
 Signals to all SPs using the same session to drop the session

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 SOAP
 Basic way for IdPs and SPs to send SAML protocol messages

 Reverse SOAP (PAOS)
 Multi-stage SOAP/HTTP exchange that allows an HTTP client to send

an HTTP request containing a SOAP response
 HTTP redirect

 Method to send SAML messages by means of HTTP 302
 HTTP POST

 Method to send SAML messages in base64-encoded HTML form
control

 HTTP artifact
 Way to transport an artifact using HTTP in two ways: URL query string

and HTML form control
 URI

 How to retrieve a SAML message by resolving a URI

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Web browser SSO
 SSO using standard browsers to multiple SPs: profiles Authn Request

protocol and HTTP Redirect, POST, and artifact bindings
 Enhanced client and proxy (ECP)

 SSO using ECPs: profiles Authn Request protocol and SOAP and PAOS
bindings

 IdP discovery
 One way for SPs to learn the IdPs used by a principal

 Single logout
 Name identifier management

 Profiles the NIM protocol with SOAP, HTTP redirect, HTTP POST, and
HTTP artifact bindings

 Artifact resolution
 Assertion query/request

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Within profiles, different flows and binding
choices are possible
 E.g., in the web browser SSO profile:

▪ Authn request from SP to IdP can use any of HTTP redirect
or HTTP POST or HTTP artifact

▪ IdP response to SP can use either HTTP POST or HTTP
artifact

 E.g., in the ECP SSO profile using the PAOS binding,
two flows are possible:
▪ ECP to SP, SP to ECP to IdP

▪ IdP to ECP to SP, SP to ECP
https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Example 1: Browser/artifact flow, IdP-initiated

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Example 2: Browser/POST flow, SP-initiated

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 More details one can see at Wikipedia
 https://en.wikipedia.org/wiki/SAML_2.0#SAML_2.0_Profiles

https://en.wikipedia.org/wiki/SAML_2.0#SAML_2.0_Profiles

 Internet Protocol
 Internet Protocol Password
 Kerberos
 Mobile One Factor Unregistered
 Mobile Two Factor Unregistered
 Mobile One Factor Contract
 Mobile Two Factor Contract
 Password
 Password Protected Transport
 Previous Session
 Public Key – X.509
 Public Key – PGP
 Public Key – SPKI

 Public Key – XML Signature
 Smartcard
 Smartcard PKI
 Software PKI
 Telephony
 Nomadic Telephony
 Personalized Telephony
 Authenticated Telephony
 Secure Remote Password
 SSL/TLS Cert-Based Client Authn
 Time Sync Token
 Unspecified

 Provide information about entities in the flow
 Identity Provider Metadata

▪ SSO Service Metadata

 Service Provider Metadata
▪ Assertion Consumer Service Metadata

 The information allows to
 Check correctness of service and identity providers

▪ e.g. there is no phishing on the line

 Validate the asserations based on the public keys

 Find endpoint to resove artifacts

 SAML V2.0 Basics
 https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf

 Wikipedia
 https://en.wikipedia.org/wiki/SAML_2.0

 SAML 2.0 Core
 https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

 SAML 2.0 Bindings
 https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf

 Profiles for the OASIS SAML V2.0
 https://svn.softwareboersen.dk/sosi-gw/tags/v1.0.1/vendor/doc/saml-profiles-2.0-os.pdf

 Profiles exaplained
 https://help.scorpionsoft.com/hc/en-us/articles/218317597-SAML-2-0-Profiles-explained-

Building-your-own-SAML-integrations

 ECP Profile
 https://indico.egi.eu/indico/event/1019/session/46/contribution/262/material/slides/0.pdf

https://www.oasis-open.org/committees/download.php/12958/SAMLV2.0-basics.pdf
https://en.wikipedia.org/wiki/SAML_2.0
https://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
https://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://svn.softwareboersen.dk/sosi-gw/tags/v1.0.1/vendor/doc/saml-profiles-2.0-os.pdf
https://help.scorpionsoft.com/hc/en-us/articles/218317597-SAML-2-0-Profiles-explained-Building-your-own-SAML-integrations
https://indico.egi.eu/indico/event/1019/session/46/contribution/262/material/slides/0.pdf

WS-Trust

 Actors & scenario example:

 A wine web service (W-WS) with a policy

▪ Policy says that a SAML token is required with
▪ Age

▪ Department Of Driving License (DODL)

 A DODL web service (D-WS) with a policy

 A user (U) who wants wine

 Every actor has a certificate with a private key

Based on: http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood

http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood

 Dedicated to SOAP Web Services
 Based on
 WS-Security

▪ message authenticity, integrity, confidentiality

 WS-SecurityPolicy
▪ description of the security requirements of services via

assertions about the security mechanisms of the services
(i.e. algorithms and types of tokens that the service accepts).

 WS-Trust adds
 Security Token Service
 Protocol for requesting/issuing security tokens used

by WS-Security and described by WS-SecurityPolicy

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-FederationSpec05282007.pdf?S_TACT=105AGX04&S_CMP=LP

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-fed/WS-FederationSpec05282007.pdf?S_TACT=105AGX04&S_CMP=LP

 The flow (simplified)
 U gets metadata from W-WS
 U asks D-WS for a security token which fulfill policy
 U authenticates and gets the security token
 U uses the security token and buy a wine in W-WS

 Terminology

 D-WS we usually call Security Token Service (STS)

▪ Or Identity Provider (IP)

 W-WS we usually call Relying Party (RP)

 U we usually call client

 A very good video
 http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood

 Some introductions
 http://fusesource.com/docs/esb/4.4.1/cxf_security/WsTrust-Intro.html

 http://msdn.microsoft.com/en-us/library/bb498017.aspx

 http://msdn.microsoft.com/en-us/library/ff650503.aspx

 http://documentation.progress.com/output/Iona/artix/5.5/security_guide_java/WsTrust-SSO-
Example.html

 How to create a STS
 http://msdn.microsoft.com/en-us/magazine/dd347547.aspx

http://channel9.msdn.com/Shows/Going+Deep/Vittorio-Bertocci-WS-Trust-Under-the-Hood
http://fusesource.com/docs/esb/4.4.1/cxf_security/WsTrust-Intro.html
http://msdn.microsoft.com/en-us/library/ff650503.aspx
http://msdn.microsoft.com/en-us/library/ff650503.aspx
http://documentation.progress.com/output/Iona/artix/5.5/security_guide_java/WsTrust-SSO-Example.html
http://msdn.microsoft.com/en-us/magazine/dd347547.aspx

WS-Federation

 Federation
 A collection of domains with a trust
 Allows interactions between users, applications and

other players
 Main Goal of WS-Federation
 Simplify the development of federated services (FS)

through cross-realm communication and management
of Federation Services

 Re-using the WS-Trust STS model and protocol.
 Single Sign-On inside trust boundaries

Based on:
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

 WS-Trust makes possible to have a basic
federation between IdP and RP

 WS-Federation
 Adds Federation Metadata to simplify the setup of

federated trust relationship between parties

 Adds Single Sign On & Single Sign Off

 Adds profiles for classic web applications

 Adds mechanism for better discovery

 Adds services for attributes and pseudonyms

 Adds claims transformation

 Active Requestor Profile

 Focus on SOAP Web Services

 Passive Requestor Profile

 Dedicated for browser client

 Based on URLs

 Uses redirections to send
messages

 Architecture of federation should be able to

 Model business requirements

 Leverage existing infrastructure

 Main trust topologies

 Direct trust

▪ Exchange

▪ Validation

 Indirect trust

 Delegation

 Supports different scenarios

(a) Direct connection (b) Firewall in between, trust by using certificates

 Direct trust with token exchange

 Direct trust with token validation

 Indirect trust

 Delegation

 Documentation

 Web Services Federation Language Version 1.2
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf

 Tutorials & presentation

 Understanding WS-Federation
http://msdn.microsoft.com/en-us/library/bb498017.aspx

 Claims-Based Architectures
http://msdn.microsoft.com/en-us/library/ff359108.aspx

 WS-Federation presentation
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://docs.oasis-open.org/wsfed/federation/v1.2/os/ws-federation-1.2-spec-os.pdf
http://msdn.microsoft.com/en-us/library/ff359108.aspx
http://www.cs.virginia.edu/~acw/security/doc/Tutorials/WS-Federation.ppt

 In this presentation we’ve covered

 Open ID Connect, SAML2, WS-Trust, WS-Fed

 The main goals in those protocols

 Authenticate

 Express statements about the subject

 Support federation

 Support different scenarios

▪ In many cases the same ones

